金屬氧化生成的腐蝕產(chǎn)物(如Fe?O?、γ-FeOOH)本身具有半導(dǎo)體特性,其禁帶寬度影響電子轉(zhuǎn)移效率。例如α-Fe?O?(Eg=2.2eV)比γ-Fe?O?(Eg=2.0eV)更穩(wěn)定。這些氧化物還可能參與光電化學(xué)反應(yīng),在光照條件下產(chǎn)生額外光電流,導(dǎo)致傳統(tǒng)電位測(cè)量出現(xiàn)偏差。現(xiàn)在研究正嘗試?yán)眠@種特性開(kāi)發(fā)自供能監(jiān)測(cè)傳感器。
在拉伸應(yīng)力和腐蝕介質(zhì)共同作用下,電極材料會(huì)發(fā)生SCC。以?shī)W氏體不銹鋼在Cl?環(huán)境為例,其裂紋擴(kuò)展速率可達(dá)10??-10??mm/s。電化學(xué)噪聲檢測(cè)發(fā)現(xiàn),SCC過(guò)程中會(huì)出現(xiàn)特征性的電流/電位突跳信號(hào),這些瞬態(tài)響應(yīng)與位錯(cuò)滑移、膜破裂等微觀事件直接相關(guān),為早期預(yù)警提供了新思路。 鋁電極電絮凝處理含油廢水,SS去除率>90%。北京循壞水電極設(shè)施
電極材料的選擇至關(guān)重要,它直接影響電極的性能和應(yīng)用范圍。金屬材料如銅、銀、鉑等,因具有良好的導(dǎo)電性,在許多電極應(yīng)用中備受青睞。銅的導(dǎo)電性優(yōu)良且成本相對(duì)較低,常用于一般的導(dǎo)電電極;銀的導(dǎo)電率更高,在一些對(duì)導(dǎo)電性要求極高的電子器件電極中有所應(yīng)用;鉑則因其出色的化學(xué)穩(wěn)定性和生物相容性,常用于醫(yī)療設(shè)備電極以及一些高精度的電化學(xué)檢測(cè)電極。此外,碳材料如石墨,也因其獨(dú)特的導(dǎo)電性能和化學(xué)穩(wěn)定性,在電池電極等領(lǐng)域使用。青海循壞水電極除硬系統(tǒng)電化學(xué)防垢涂層使結(jié)垢誘導(dǎo)期延長(zhǎng)10倍。
目前相比傳統(tǒng)氯消毒,電氧化可同步殺滅病原體和降解微污染物(如農(nóng)藥、內(nèi)分泌干擾物)。采用Ti/IrO?-Ta?O?電極時(shí),大腸桿菌的滅活率在5分鐘內(nèi)達(dá)99.99%,且無(wú)消毒副產(chǎn)物(DBPs)生成。對(duì)于飲用水中常見(jiàn)的阿特拉津(除草劑),電氧化優(yōu)先攻擊其叔胺基團(tuán),降解路徑明確。實(shí)際應(yīng)用中需平衡消毒效果與能耗(通常<0.5 kWh/m3),并考慮水源水質(zhì)(如天然有機(jī)物的干擾)。形成了模塊化的電氧化設(shè)備已經(jīng)成功作用于農(nóng)村分散式供水處理。
電鍍法也是制備鈦電極的重要手段。在電鍍過(guò)程中,將鈦基體作為陰極,浸入含有活性金屬離子的電鍍液中,通過(guò)施加合適的電流密度,使活性金屬離子在鈦基體表面還原沉積,形成活性涂層。例如,在制備鈦基貴金屬電極時(shí),可以采用電鍍法將金、鉑等貴金屬沉積在鈦基體表面。電鍍法能夠精確控制涂層的厚度和成分,制備出具有均勻涂層的鈦電極。同時(shí),通過(guò)調(diào)整電鍍液的配方和電鍍工藝參數(shù),還可以制備出具有特殊結(jié)構(gòu)和性能的涂層,滿足不同的應(yīng)用需求 。電解水析氫技術(shù)提升換熱系數(shù)15-20%。
電極氧化反應(yīng)遵循電化學(xué)熱力學(xué)原理,可用能斯特方程描述電極電位與反應(yīng)物濃度的關(guān)系。以鐵電極為例,其氧化反應(yīng)Fe→Fe2?+2e?的標(biāo)準(zhǔn)電極電位為-0.44V(vs SHE)。當(dāng)系統(tǒng)電位超過(guò)該值,熱力學(xué)上即可發(fā)生自發(fā)氧化。在實(shí)際水系統(tǒng)中,溶解氧的存在會(huì)顯著提高氧化電位,例如O?+2H?O+4e?→4OH?反應(yīng)的標(biāo)準(zhǔn)電位達(dá)+0.40V,二者耦合構(gòu)成腐蝕電池。溫度每升高10℃,氧化反應(yīng)速率通常提高1.5-2倍,這對(duì)高溫循環(huán)水系統(tǒng)的電極選材提出更高要求。三維電極處理苯酚廢水效率提高50%。遼寧工業(yè)電極設(shè)備
電化學(xué)方法使碳鋼腐蝕速率降至0.02mm/a。北京循壞水電極設(shè)施
電極可分為陽(yáng)極和陰極,在電化學(xué)電池中,發(fā)生氧化作用的電極是陽(yáng)極,該過(guò)程中物質(zhì)失去電子;發(fā)生還原作用的電極是陰極,物質(zhì)在這一過(guò)程中得到電子。例如在常見(jiàn)的鋰離子電池中,充電時(shí),鋰離子從正極脫出,通過(guò)電解質(zhì)嵌入負(fù)極,此時(shí)正極是陽(yáng)極,負(fù)極是陰極;放電時(shí)則相反,鋰離子從負(fù)極脫出,通過(guò)電解質(zhì)嵌入正極,電極的陰陽(yáng)極角色發(fā)生轉(zhuǎn)換,正是這種陰陽(yáng)極之間的氧化還原反應(yīng),實(shí)現(xiàn)了電池的充放電過(guò)程。
參比電極在電化學(xué)測(cè)量中扮演著不可或缺的角色,它為其他電極提供穩(wěn)定的參考電位。在復(fù)雜的電化學(xué)體系中,由于各種因素的影響,單個(gè)電極的電位難以直接準(zhǔn)確測(cè)量,而參比電極的電位具有高度的穩(wěn)定性和重現(xiàn)性。將參比電極與待測(cè)電極組成測(cè)量電池,通過(guò)測(cè)量電池的電動(dòng)勢(shì),就能依據(jù)參比電極的已知電位,精確推算出待測(cè)電極的電位,為研究電化學(xué)反應(yīng)的機(jī)理、電極材料的性能等提供了可靠的電位基準(zhǔn),廣泛應(yīng)用于科研、工業(yè)生產(chǎn)中的電化學(xué)分析等領(lǐng)域。 北京循壞水電極設(shè)施